

Confugue

Introduction

Confugue [https://github.com/cifkao/confugue] is a hierarchical configuration framework for Python. It provides a wrapper class for nested configuration dictionaries (usually loaded from YAML files), which can be used to easily configure complicated object hierarchies.

The package is ideal for configuring deep learning experiments. These often have large numbers of hyperparameters, and managing all their values globally can quickly get tedious. Instead, Confugue allows each part of the deep learning model to be automatically supplied with hyperparameters from a configuration file, eliminating the need to pass them around. The structure of the configuration file follows the hierarchy of the model architecture; for example, if the model has multiple encoders consisting of several layers, then each layer will have its section in the configuration file, nested under the corresponding encoder section.

As an example, here is a simplified code snippet from a machine learning project which uses Confugue:

@configurable
class Model:

 def __init__(self, vocabulary, use_sampling=False):
 self.embeddings = self._cfg['embedding_layer'].configure(EmbeddingLayer,
 input_size=len(vocabulary))
 self.decoder = self._cfg['decoder'].configure(RNNDecoder,
 vocabulary=vocabulary,
 embedding_layer=self.embeddings)

@configurable
class RNNDecoder:

 def __init__(self, vocabulary, embedding_layer):
 self.cell = self._cfg['cell'].configure(tf.keras.layers.GRUCell,
 units=100,
 dtype=tf.float32)
 self.output_projection = self._cfg['output_projection'].configure(
 tf.layers.Dense,
 units=len(vocabulary),
 use_bias=False)

The model could then be configured using the following config file, overriding the values specified in the code and filling in the ones that are missing.

embedding_layer:
 output_size: 300
decoder:
 cell:
 class: !!python/name:tensorflow.keras.layers.LSTMCell
 units: 1024
use_sampling: True

Contents

	Getting Started
	General Guide

	Deep Learning Guide

	More Features
	Overriding the callable

	Accessing raw values

	Configuration lists

	Argument binding

	Maybe configure

	Required parameters

	API Reference

	Comparison to Other Frameworks
	Gin

	Sacred

Getting Started

Two guides for getting started with Confugue are available:

	General guide: A guide to the basics of Confugue for general Python users.

	Deep learning guide: A quick start guide for deep learning users with extensive examples in PyTorch.

Getting Started – General Guide

Tip

Deep learning users should check out the Deep Learning Quick Start Guide with examples in PyTorch.

First, we need a function or class to configure. Let’s start with a simple function like this:

def main(foo, bar, baz):
 print(foo, bar, baz)

Next, we need to create a Configuration object. Typically, we will do this by loading a YAML config file:

from confugue import Configuration

config = Configuration.from_yaml_file('config.yaml')

config now acts as a wrapper for the contents of config.yaml, and can be used to configure our main() function, like so:

config.configure(main, foo=1, bar=2) # baz needs to be set in config.yaml

The code above will call main() with the given arguments, plus any arguments defined in the configuration. The values specified in the code are treated as defaults and can be overridden by the configuration. For example, if config.yaml looks like this…

foo: ham
baz: spam

…then the above code will call main(foo='ham', bar=2, baz='spam').

Hierarchical configuration

Although any function or class can be configured as described above, in order to make full use of Confugue, we need to decorate our functions and classes with the @configurable decorator.
This enables them to access values from their parent Configuration object, and use them to further configure other functions or class instances.
Decorated functions and classes each behave a bit differently:

	A @configurable class automatically obtains a magic _cfg property containing the parent configuration object. The property is set immediately upon the creation of the object, so that it can already be used in __init__.

	A @configurable function (or method) should define a keyword-only parameter [https://python-3-for-scientists.readthedocs.io/en/latest/python3_advanced.html#keyword-only-arguments] _cfg (see below for an example of how to do that), which will receive the parent configuration object.

For example:

from confugue import configurable

@configurable
def main(foo, bar=456, *, _cfg):
 print('main', foo, bar)
 ham1 = _cfg['ham1'].configure(Ham)
 ham2 = _cfg['ham2'].configure(Ham)

@configurable
class Ham:

 def __init__(self, x):
 print('Ham', x)
 self._egg = self._cfg['egg'].configure(Egg, y=0)

class Egg:

 def __init__(self, y):
 print('Egg', y)

config = Configuration.from_yaml_file('config2.yaml')
config.configure(main)

Now, given the following config2.yaml…

foo: 123
ham1:
 x: 1
 egg:
 y: 2
ham2:
 x: 3

…we will get this output:

main 123 456
Ham 1
Egg 2
Ham 3
Egg 0

How does it work?

When we call config.configure(main), the following happens:

	The foo value defined in the config file gets passed as an argument to main(). The values ham1 and ham2, however, do not get passed as arguments since the function does not accept them, and instead become available via _cfg.

	_cfg['ham1'] retrieves the ham1 config dictionary and wraps it in a new Configuration object, ready to configure a new instance of Ham.

	Similarly, inside Ham’s constructor, the value under ham1 -> egg is retrieved and used to configure an Egg instance.

Notice how self._cfg['egg'].configure(Egg, y=0) works even though there is no ham2 -> egg key in the config file.
This is because self._cfg['egg'] returns an empty Configuration object, which will happily instantiate Egg as long as a default value for y is provided in the code.

Keep in mind

	When calling a configurable, Confugue looks at its function signature and matches the configuration keys against it. Only the matching keys are passed as arguments (unless the signature contains a **kwargs argument, in which case all keys will be used).
This behavior can be changed by passing a list of configurable parameters as the params argument of the @configurable decorator.

	A configurable can still be called normally (rather than using configure). _cfg will be automatically set to a default configuration object, which will behave as if the configuration file was empty.

	The @configurable decorator is necessary only if the function or class needs to access its configuration (_cfg).

	Instead of loading a YAML file, one can use any other configuration dictionary by directly calling Configuration(cfg_dict).

See also

Advanced features are described in More Features.

Deep Learning Quick Start Guide

This section is intended as a quick start guide for deep learning users.
It is based on PyTorch examples, but it should be easy to follow even for people working with other frameworks like TensorFlow.

Not into deep learning?

Confugue is absolutely not limited to machine learning applications.
Python users unfamiliar with deep learning should check out the General Guide.

Tip

This guide is available as a Jupyter notebook [https://github.com/cifkao/confugue/blob/master/docs/pytorch_tutorial.ipynb].
[image: Open in Colab] [https://colab.research.google.com/github/cifkao/confugue/blob/master/docs/pytorch_tutorial.ipynb]

Basic PyTorch example

We are going to start with a basic PyTorch model, adapted from the CIFAR-10 tutorial [https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html].
First, let’s see what the model looks like without using Confugue:

from torch import nn

class Net(nn.Module):

 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)
 self.conv2 = nn.Conv2d(6, 16, 5)
 self.pool = nn.MaxPool2d(2, 2)
 self.fc1 = nn.Linear(400, 120)
 self.fc2 = nn.Linear(120, 10)
 self.act = nn.ReLU()

 def forward(self, x):
 x = self.pool(self.act(self.conv1(x)))
 x = self.pool(self.act(self.conv2(x)))
 x = x.flatten(start_dim=1)
 x = self.act(self.fc1(x))
 x = self.fc2(x)
 return x

Making it configurable

Instead of hard-coding all the hyperparameters like above, we want to be able to specify them in a configuration file. To do so, we are going to decorate our class with the @configurable decorator. This provides it with a magic _cfg property, giving it access to the configuration. We can then rewrite our __init__ as follows:

from confugue import configurable, Configuration

@configurable
class Net(nn.Module):

 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = self._cfg['conv1'].configure(nn.Conv2d, in_channels=3)
 self.conv2 = self._cfg['conv2'].configure(nn.Conv2d)
 self.pool = self._cfg['pool'].configure(nn.MaxPool2d)
 self.fc1 = self._cfg['fc1'].configure(nn.Linear)
 self.fc2 = self._cfg['fc2'].configure(nn.Linear, out_features=10)
 self.act = self._cfg['act'].configure(nn.ReLU)

 def forward(self, x):
 x = self.pool(self.act(self.conv1(x)))
 x = self.pool(self.act(self.conv2(x)))
 x = x.flatten(start_dim=1)
 x = self.act(self.fc1(x))
 x = self.fc2(x)
 return x

Instead of creating each layer directly, we configure it with values from the corresponding section of the configuration file (which we will see in a moment).
Notice that we can still specify arguments in the code (e.g. in_channels=3 for the conv1 layer), but these are treated as defaults and can be overridden in the configuration file if needed.

Loading configuration from a YAML file

Calling Net() directly would result in an error, since we haven’t specified defaults for all the required parameters of each layer.
We therefore need to create a configuration file config.yaml to supply them:

conv1:
 out_channels: 6
 kernel_size: 5
conv2:
 in_channels: 6
 out_channels: 16
 kernel_size: 5
pool:
 kernel_size: 2
 stride: 2
fc1:
 in_features: 400
 out_features: 120
fc2:
 in_features: 120

Note

We do not need to include the activation function (act), since it does not have any
required parameters. We could, however, override the type
of the activation function itself.

We are now ready to load the file into a Configuration object and use it to configure our network:

>>> cfg = Configuration.from_yaml_file('config.yaml')
>>> cfg
Configuration({'conv1': {'out_channels': 6, 'kernel_size': 5}, 'conv2': {'in_channels': 6, 'out_channels': 16, 'kernel_size': 5}, 'pool': {'kernel_size': 2, 'stride': 2}, 'fc1': {'in_features': 400, 'out_features': 120}, 'fc2': {'in_features': 120}})
>>> cfg.configure(Net)
Net(
 (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
 (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
 (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (fc1): Linear(in_features=400, out_features=120, bias=True)
 (fc2): Linear(in_features=120, out_features=10, bias=True)
 (act): ReLU()
)

Tip

Instead of loading a YAML file, one can use any configuration dictionary by directly calling Configuration(cfg_dict).

Nested configurables

One of the most useful features of Confugue is that @configurable classes and functions can use other configurables, and the structure of the configuration file will naturally follow this hierarchy.
To see this in action, we are going to write a configurable main function which trains our simple model on the CIFAR-10 dataset.

import torchvision
from torchvision import transforms

@configurable
def main(num_epochs=1, log_period=2000, *, _cfg):
 net = _cfg['net'].configure(Net)
 criterion = _cfg['loss'].configure(nn.CrossEntropyLoss)
 optimizer = _cfg['optimizer'].configure(torch.optim.SGD, params=net.parameters(),
 lr=0.001)

 transform = transforms.Compose(
 [transforms.ToTensor(),
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
 train_data = torchvision.datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transform)
 train_loader = _cfg['data_loader'].configure(torch.utils.data.DataLoader,
 dataset=train_data, batch_size=4,
 shuffle=True, num_workers=2)

 for epoch in range(num_epochs):
 for i, batch in enumerate(train_loader):
 inputs, labels = batch
 optimizer.zero_grad()
 loss = criterion(net(inputs), labels)
 loss.backward()
 optimizer.step()

 if (i + 1) % log_period == 0:
 print(i + 1, loss.item())

Our config.yaml might then look like this:

net:
 conv1:
 out_channels: 6
 kernel_size: 5
 conv2:
 in_channels: 6
 out_channels: 16
 kernel_size: 5
 pool:
 kernel_size: 2
 stride: 2
 fc1:
 in_features: 400
 out_features: 120
 fc2:
 in_features: 120

optimizer:
 class: !!python/name:torch.optim.Adam
data_loader:
 batch_size: 8
num_epochs: 2
log_period: 1000

To create and train our model:

cfg = Configuration.from_yaml_file('config.yaml')
cfg.configure(main)

Configuring lists

The configure_list method allows us to configure a list of objects, with the parameters for each supplied from the
configuration file. We are going to use this, in conjunction with nn.Sequential, to fully specify the model in the configuration file, so we won’t
need our Net class anymore.

layers:
 - class: !!python/name:torch.nn.Conv2d
 in_channels: 3
 out_channels: 6
 kernel_size: 5
 - class: !!python/name:torch.nn.ReLU
 - class: !!python/name:torch.nn.MaxPool2d
 kernel_size: 2
 stride: 2
 - class: !!python/name:torch.nn.Conv2d
 in_channels: 6
 out_channels: 16
 kernel_size: 5
 - class: !!python/name:torch.nn.ReLU
 - class: !!python/name:torch.nn.MaxPool2d
 kernel_size: 2
 stride: 2
 - class: !!python/name:torch.nn.Flatten
 - class: !!python/name:torch.nn.Linear
 in_features: 400
 out_features: 120
 - class: !!python/name:torch.nn.ReLU
 - class: !!python/name:torch.nn.Linear
 in_features: 120
 out_features: 10

Creating the model then becomes a matter of two lines of code:

>>> cfg = Configuration.from_yaml_file('config.yaml')
>>> nn.Sequential(*cfg['layers'].configure_list())
Sequential(
 (0): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
 (1): ReLU()
 (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
 (4): ReLU()
 (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (6): Flatten()
 (7): Linear(in_features=400, out_features=120, bias=True)
 (8): ReLU()
 (9): Linear(in_features=120, out_features=10, bias=True)
)

This offers a lot of flexibility, but it should be used with care. If your configuration file is longer than your code, you might be overusing it.

See also

Advanced features are described in More Features.

More Features

Overriding the callable

In addition to overriding the arguments of a callable (function or class), the configuaration file may also replace the callable itself using the class key.
In a YAML file, the value needs to be specified using the !!python/name tag (see the PyYAML documentation [https://pyyaml.org/wiki/PyYAMLDocumentation#names-and-modules] for more information):

ham:
 class: !!python/name:spam.Spam

Note that this is potentially unsafe, as it allows the configuration file to execute arbitrary code.
To load YAML files safely (which will disable this feature), pass loader=yaml.SafeLoader to from_yaml() or from_yaml_file().

Accessing raw values

The raw content of a configuration object can be obtained by calling its get() method.
To access the value of a given key, use _cfg.get('key') (equivalent to _cfg['key'].get()).

Configuration lists

Sometimes we might want to create a list of objects of the same type, with arguments for each item supplied in the configuration file.
This can be useful for example when creating a deep neural network with layers of different sizes.
In this situation, we can use the configure_list() method, like so:

_cfg['dense_layers'].configure_list(tf.keras.layers.Dense, activation='relu')

The configuration file might then look like this:

dense_layers:
 - units: 100
 - units: 150
 - units: 2
 activation: None

Argument binding

It is sometimes useful to pre-configure a callable without actually calling it, for example if we intend to call it multiple times or want to supply additional arguments later.
This can be achieved using the bind() method, e.g.:

Dense = _cfg['dense_layer'].bind(tf.keras.layers.Dense, activation='relu')
dense1 = Dense() # parameters supplied by configuration
dense2 = Dense(use_bias=False, activation=None) # overrides configuration

Maybe configure

We have seen that we can omit parts of the configuration file as long as defaults for all the required parameters are defined in the code.
However, we might sometimes want to skip creating an object if the corresponding key is omitted from the configuration.
This functionality is provided by the maybe_configure() method, which returns None if the configuration value is missing.

There is also maybe_bind(), which works analogously (see Argument binding above).

Required parameters

Instead of providing a default value, it is possbile to explicitly mark a parameter as required:

_cfg['dense_layer'].configure(tf.keras.layers.Dense, activation=_cfg.REQUIRED)

Not providing a value for this parameter in the configuration will result in an exception.

API Reference

	
@confugue.configurable(*, params=ALL, cfg_property='_cfg', cfg_param='_cfg')

	A decorator that makes a function or a class configurable.

The decorator may be used with or without parentheses (i.e. both @configurable
and @configurable() is valid).

If the decorated callable is a function or method, it needs to define a keyword-only argument
_cfg, which will be automatically filled with an instance of Configuration
when the function is called. If the decorated callable is a class, a _cfg property will
be created holding the Configuration instance.

The decorated function/class can be called/instantiated normally (without passing the _cfg
argument), or via Configuration.configure().

	Parameters

	
	params – A list of configuration keys to pass as keyword arguments. The default behavior is
to include all keys matching the function’s signature, or all keys if the signature
contains a ** parameter.

	cfg_property – The name of the property that will hold the Configuration object in
the case where a class is beging decorated.

	cfg_param – The name of the parameter that will receive the Configuration object in
the case where a function is being decorated. This needs to be a keyword-only
parameter.

	
class confugue.Configuration(value: Any = MISSING_VALUE, name: str = '<root>')

	Wrapper for nested configuration dictionaries or lists.

The core functionality is provided by the configure() method, which calls a given
callable with the arguments from the wrapped dictionary.

If the wrapped value is a dictionary or a list, basic operations such as indexing and iteration
are supported, with the values recursively wrapped in Configuration objects. If the
user tries to access a key or index which is missing, an “empty” configuration object is
returned; this can still be used normally and behaves more or less as if it contained an empty
dictionary.

The wrapped value may be of any other type, but in this case, most of the methods will raise
an exception. To retrieve the raw wrapped value (whatever the type), use the get() method
with no arguments.

	
configure(constructor: Optional[Callable] = None, /, **kwargs) → Any

	Configure a callable using this configuration.

Calls constructor with the keyword arguments specified in this configuration object or
passed to this method. Note that the constructor is called even if this configuration
object corresponds to a missing key. constructor may be overridden in by a class
configuration key (if the constructor parameter is not given, then the class key is
required).

Any keyword arguments passed to this method are treated as defaults and can be overridden
by the configuration. A special Configuration.REQUIRED value can be used to mark a
given key as required.

	Returns

	The return value of constructor, or None if the wrapped value is None.

	Raises

	ConfigurationError – If the wrapped value is not a dict, if required arguments are
 missing, or if any exception occurs while calling constructor.

	
maybe_configure(constructor: Optional[Callable] = None, /, **kwargs) → Any

	Configure a callable only if the configuration is present.

Like configure(), but returns None if the configuration is missing.

	Returns

	The return value of constructor, or None if the wrapped value is missing or None.

	Raises

	ConfigurationError – If the wrapped value is not a dict, if required arguments are
 missing, or if any exception occurs while calling constructor.

	
configure_list(constructor: Optional[Callable] = None, /, **kwargs) → Optional[List]

	Configure a list of objects.

This method should be used if the configuration is expected to be a list. Every item of
this list will then be used to configure a new object, as if configure() was called on
it. Any defaults supplied to this method will be used for all the items.

	Returns

	A list containing the values obtained by configuring constructor, in turn, using all
the dicts in the wrapped list; None if the wrapped value is None.

	Raises

	ConfigurationError – If the wrapped value is not a list of dicts, if required arguments
 are missing, or if any exception occurs while calling constructor.

	
bind(constructor: Optional[Callable] = None, /, **kwargs) → Optional[Callable]

	Configure a callable without calling it.

Like configure(), but instead of calling constructor directly, it returns a new
function that calls constructor with parameters bound to the supplied values. The
function may still accept other parameters.

	Returns

	A function, or None if the wrapped value is None.

	Raises

	ConfigurationError – If the wrapped value is not a dict, or if required arguments are
 missing.

	
maybe_bind(constructor: Optional[Callable] = None, /, **kwargs) → Optional[Callable]

	Configure a callable without calling it, but only if the configuration is present.

Like bind(), but returns None if the configuration is missing.

	Returns

	A function, or None if the wrapped value is missing or None.

	Raises

	ConfigurationError – If the wrapped value is not a dict, or if required arguments are
 missing.

	
get(key: Hashable = None, default: Any = NO_DEFAULT) → Any

	Return an item from this configuration object (assuming the wrapped value is indexable).

	Returns

	If key is given, the corresponding item from the wrapped object. Otherwise, the entire
wrapped value. If the value is missing, default is returned instead (if given).

	Raises

	
	KeyError – If the value is missing and no default was given.

	IndexError – If the value is missing and no default was given.

	TypeError – If the wrapped object does not support indexing.

	
get_unused_keys(warn: bool = False) → List[Hashable]

	Recursively find keys that were never accessed.

	Parameters

	warn – If True, a warning will be issued if unused keys are found.

	Returns

	A list of unused keys.

	
classmethod from_yaml(stream: str | bytes | TextIO | BinaryIO, loader=yaml.Loader) → Configuration

	Create a configuration from YAML.

The configuration is loaded using PyYAML’s (potentially unsafe) Loader by default.
If you wish to load configuration files from untrusted sources, you should pass
loader=yaml.SafeLoader.

	Parameters

	
	stream – A YAML string or an open file object.

	loader – One of PyYAML’s loader classes.

	Returns

	A Configuration instance wrapping the loaded configuration.

	
classmethod from_yaml_file(stream: str | TextIO | BinaryIO, loader=yaml.Loader) → Configuration

	Create a configuration from a YAML file.

The configuration is loaded using PyYAML’s (potentially unsafe) Loader by default.
If you wish to load configuration files from untrusted sources, you should pass
loader=yaml.SafeLoader.

	Parameters

	
	stream – A path to a YAML file, or an open file object.

	loader – One of PyYAML’s loader classes.

	Returns

	A Configuration instance wrapping the loaded configuration.

	
class confugue.interactive(mode: str = 'all')

	A context manager that enables or disables the interactive editing mode.

	Parameters

	mode – ‘all’ to edit all values, ‘missing’ to edit only missing values, or
‘none’ to disable the interactive mode.

	
class confugue.ConfigurationError

	

	
class confugue.ConfigurationWarning

	

Comparison to Other Frameworks

Gin

Confugue is somewhat similar to Gin [https://github.com/google/gin-config], but is much more minimalistic yet, in some ways, more powerful.
Some advantages of Confugue over Gin are:

	It is straightforward to configure many objects of the same type with different parameters for each; with Gin, this is possible, but it requires using scopes.

	Any function or class can be configured without having been explicitly registered.

	Config files may override the type of an object (or the function being called) while preserving the default parameters provided by the caller.

	It is possible to access (and even manipulate) configuration values explicitly instead of (or in addition to) having them supplied as parameters.

	The structure of the config file is nested – typically following the call hierarchy – compared to Gin’s linear structure.

On the other hand, Confugue doesn’t have some of the advanced features of Gin, such as config file inclusion or ‘operative configuration’ logging. It also doesn’t support macros, but a similar effect can be achieved using PyYAML’s aliases [https://pyyaml.org/wiki/PyYAMLDocumentation#aliases].

Some other differences (which may be viewed as advantages or disadvantages in different situations) are:

	Gin config files specify default values for function parameters, which can be overridden by the caller. In Confugue, on the other hand, the config file has the final say.

	Gin will seamlessly load defaults from the configuration file every time a configurable function or class is called. Confugue is more explicit in that the caller first has to ask for a specific key from the configuration file.

Sacred

Sacred [https://github.com/IDSIA/sacred] also offers configuration functionality, but its goals are much broader, focusing on experiment management (including keeping track of metrics and other information). Confugue, on the other hand, is not specifically targeted to scientific experimentation (even though it is particularly well suited for machine learning experiments). As for the configuration mechanism itself, Sacred has so-called ‘captured functions’ which resemble configurable functions in Confugue or Gin, but does not offer the same ability to configure arbitrary objects in a hierarchical way.

Index

 B
 | C
 | F
 | G
 | I
 | M

B

 	
 	bind() (confugue.Configuration method)

C

 	
 	configurable() (in module confugue)

 	Configuration (class in confugue)

 	ConfigurationError (class in confugue)

 	
 	ConfigurationWarning (class in confugue)

 	configure() (confugue.Configuration method)

 	configure_list() (confugue.Configuration method)

F

 	
 	from_yaml() (confugue.Configuration class method)

 	
 	from_yaml_file() (confugue.Configuration class method)

G

 	
 	get() (confugue.Configuration method)

 	
 	get_unused_keys() (confugue.Configuration method)

I

 	
 	interactive (class in confugue)

M

 	
 	maybe_bind() (confugue.Configuration method)

 	
 	maybe_configure() (confugue.Configuration method)

 nav.xhtml

 Table of Contents

 		
 Confugue

 		
 Getting Started

 		
 General Guide

 		
 Hierarchical configuration

 		
 Deep Learning Guide

 		
 Basic PyTorch example

 		
 Making it configurable

 		
 Loading configuration from a YAML file

 		
 Nested configurables

 		
 Configuring lists

 		
 More Features

 		
 Overriding the callable

 		
 Accessing raw values

 		
 Configuration lists

 		
 Argument binding

 		
 Maybe configure

 		
 Required parameters

 		
 API Reference

 		
 Comparison to Other Frameworks

 		
 Gin

 		
 Sacred

_static/minus.png

_static/plus.png

_static/file.png

